关于MySQL中的表锁和行锁

2024-05-11 15:13

1. 关于MySQL中的表锁和行锁

mysql行锁和表锁锁是计算机协调多个进程或纯线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所在有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。
 概述
相对其他数据库而言,MySQL的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制。
MySQL大致可归纳为以下3种锁:
表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。
行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般
 MySQL表级锁的锁模式(MyISAM)MySQL表级锁有两种模式:表共享锁(Table Read Lock)和表独占写锁(Table Write Lock)。
对MyISAM的读操作,不会阻塞其他用户对同一表请求,但会阻塞对同一表的写请求;
对MyISAM的写操作,则会阻塞其他用户对同一表的读和写操作;
MyISAM表的读操作和写操作之间,以及写操作之间是串行的。
当一个线程获得对一个表的写锁后,只有持有锁线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。

MySQL表级锁的锁模式
MySQL的表锁有两种模式:表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。锁模式的兼容如下表
MySQL中的表锁兼容性
当前锁模式/是否兼容/请求锁模式
读锁    是    是    否    
写锁    是    否    否    
可见,对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求;对MyISAM表的写操作,则会阻塞其他用户对同一表的读和写请求;MyISAM表的读和写操作之间,以及写和写操作之间是串行的!(当一线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。)
如何加表锁
MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。在本书的示例中,显式加锁基本上都是为了方便而已,并非必须如此。
给MyISAM表显示加锁,一般是为了一定程度模拟事务操作,实现对某一时间点多个表的一致性读取。
要特别说明以下两点内容。
上面的例子在LOCK TABLES时加了‘local’选项,其作用就是在满足MyISAM表并发插入条件的情况下,允许其他用户在表尾插入记录
在用LOCKTABLES给表显式加表锁是时,必须同时取得所有涉及表的锁,并且MySQL支持锁升级。也就是说,在执行LOCK TABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,如果加的是读锁,那么只能执行查询操作,而不能执行更新操作。其实,在自动加锁的情况下也基本如此,MySQL问题一次获得SQL语句所需要的全部锁。这也正是MyISAM表不会出现死锁(Deadlock Free)的原因
一个session使用LOCK TABLE 命令给表film_text加了读锁,这个session可以查询锁定表中的记录,但更新或访问其他表都会提示错误;同时,另外一个session可以查询表中的记录,但更新就会出现锁等待。
当使用LOCK TABLE时,不仅需要一次锁定用到的所有表,而且,同一个表在SQL语句中出现多少次,就要通过与SQL语句中相同的别名锁多少次,否则也会出错!
并发锁
在一定条件下,MyISAM也支持查询和操作的并发进行。
MyISAM存储引擎有一个系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别可以为0、1或2。
当concurrent_insert设置为0时,不允许并发插入。
当concurrent_insert设置为1时,如果MyISAM允许在一个读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置。
当concurrent_insert设置为2时,无论MyISAM表中有没有空洞,都允许在表尾插入记录,都允许在表尾并发插入记录。
可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入锁争用。例如,将concurrent_insert系统变量为2,总是允许并发插入;同时,通过定期在系统空闲时段执行OPTIONMIZE TABLE语句来整理空间碎片,收到因删除记录而产生的中间空洞。

MyISAM的锁调度
前面讲过,MyISAM存储引擎的读和写锁是互斥,读操作是串行的。那么,一个进程请求某个MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢?答案是写进程先获得锁。不仅如此,即使读进程先请求先到锁等待队列,写请求后到,写锁也会插到读请求之前!这是因为MySQL认为写请求一般比读请求重要。这也正是MyISAM表不太适合于有大量更新操作和查询操作应用的原因,因为,大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞。这种情况有时可能会变得非常糟糕!幸好我们可以通过一些设置来调节MyISAM的调度行为。
通过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。
通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接发出的更新请求优先级降低。
通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。
虽然上面3种方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。
另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL变暂时将写请求的优先级降低,给读进程一定获得锁的机会。
上面已经讨论了写优先调度机制和解决办法。这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”!因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题。因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。
InnoDB锁问题
InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。
行级锁和表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。

1.事务(Transaction)及其ACID属性
事务是由一组SQL语句组成的逻辑处理单元,事务具有4属性,通常称为事务的ACID属性。
原性性(Actomicity):事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。
一致性(Consistent):在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以操持完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。
隔离性(Isolation):数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。
持久性(Durable):事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。
2.并发事务带来的问题
相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持可以支持更多的用户。但并发事务处理也会带来一些问题,主要包括以下几种情况。
更新丢失(Lost Update):当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题——最后的更新覆盖了其他事务所做的更新。例如,两个编辑人员制作了同一文档的电子副本。每个编辑人员独立地更改其副本,然后保存更改后的副本,这样就覆盖了原始文档。最后保存其更改保存其更改副本的编辑人员覆盖另一个编辑人员所做的修改。如果在一个编辑人员完成并提交事务之前,另一个编辑人员不能访问同一文件,则可避免此问题
脏读(Dirty Reads):一个事务正在对一条记录做修改,在这个事务并提交前,这条记录的数据就处于不一致状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”的数据,并据此做进一步的处理,就会产生未提交的数据依赖关系。这种现象被形象地叫做“脏读”。
不可重复读(Non-Repeatable Reads):一个事务在读取某些数据已经发生了改变、或某些记录已经被删除了!这种现象叫做“不可重复读”。
幻读(Phantom Reads):一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“幻读”。

3.事务隔离级别
在并发事务处理带来的问题中,“更新丢失”通常应该是完全避免的。但防止更新丢失,并不能单靠数据库事务控制器来解决,需要应用程序对要更新的数据加必要的锁来解决,因此,防止更新丢失应该是应用的责任。
“脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。数据库实现事务隔离的方式,基本可以分为以下两种。
一种是在读取数据前,对其加锁,阻止其他事务对数据进行修改。
另一种是不用加任何锁,通过一定机制生成一个数据请求时间点的一致性数据快照(Snapshot),并用这个快照来提供一定级别(语句级或事务级)的一致性读取。从用户的角度,好像是数据库可以提供同一数据的多个版本,因此,这种技术叫做数据多版本并发控制(MultiVersion Concurrency Control,简称MVCC或MCC),也经常称为多版本数据库。
数据库的事务隔离级别越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上“串行化”进行,这显然与“并发”是矛盾的,同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。
为了解决“隔离”与“并发”的矛盾,ISO/ANSI SQL92定义了4个事务隔离级别,每个级别的隔离程度不同,允许出现的副作用也不同,应用可以根据自己业务逻辑要求,通过选择不同的隔离级别来平衡"隔离"与"并发"的矛盾
事务4种隔离级别比较
隔离级别/读数据一致性及允许的并发副作用    读数据一致性    脏读    不可重复读    幻读    
未提交读(Read uncommitted)
最低级别,只能保证不读取物理上损坏的数据    是    是    是    
已提交度(Read committed)    语句级    否    是    是    
可重复读(Repeatable read)    事务级    否    否    是    
可序列化(Serializable)    最高级别,事务级    否    否    否    
最后要说明的是:各具体数据库并不一定完全实现了上述4个隔离级别,例如,Oracle只提供Read committed和Serializable两个标准级别,另外还自己定义的Read only隔离级别:SQL Server除支持上述ISO/ANSI SQL92定义的4个级别外,还支持一个叫做"快照"的隔离级别,但严格来说它是一个用MVCC实现的Serializable隔离级别。MySQL支持全部4个隔离级别,但在具体实现时,有一些特点,比如在一些隔离级下是采用MVCC一致性读,但某些情况又不是。


获取InonoD行锁争用情况
可以通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况:
如果发现争用比较严重,如Innodb_row_lock_waits和Innodb_row_lock_time_avg的值比较高,还可以通过设置InnoDB Monitors来进一步观察发生锁冲突的表、数据行等,并分析锁争用的原因。    
InnoDB的行锁模式及加锁方法
InnoDB实现了以下两种类型的行锁。
共享锁(s):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务取得相同的数据集共享读锁和排他写锁。
另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。
意向共享锁(IS):事务打算给数据行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。
意向排他锁(IX):事务打算给数据行加排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。
InnoDB行锁模式兼容性列表
如果一个事务请求的锁模式与当前的锁兼容,InnoDB就请求的锁授予该事务;反之,如果两者两者不兼容,该事务就要等待锁释放。
意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及及数据集加排他锁(X);对于普通SELECT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会任何锁;事务可以通过以下语句显示给记录集加共享锁或排锁。
共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE
排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE
用SELECT .. IN SHARE MODE获得共享锁,主要用在需要数据依存关系时确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT ... FOR UPDATE方式获取排他锁。
InnoDB行锁实现方式
InnoDB行锁是通过索引上的索引项来实现的,这一点MySQL与Oracle不同,后者是通过在数据中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味者:只有通过索引条件检索数据,InnoDB才会使用行级锁,否则,InnoDB将使用表锁!
在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。
什么时候使用表锁
对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个另特殊事务中,也可以考虑使用表级锁。
第一种情况是:事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这种情况下可以考虑使用表锁来提高该事务的执行速度。
第二种情况是:事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销。
当然,应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表。
在InnoDB下 ,使用表锁要注意以下两点。
(1)使用LOCK TALBES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层MySQL Server负责的,仅当autocommit=0、innodb_table_lock=1(默认设置)时,InnoDB层才能知道MySQL加的表锁,MySQL Server才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁;否则,InnoDB将无法自动检测并处理这种死锁。
(2)在用LOCAK TABLES对InnoDB锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCAK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK产不能释放用LOCAK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁,正确的方式见如下语句。
关于死锁
MyISAM表锁是deadlock free的,这是因为MyISAM总是一次性获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但是在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,这就决定了InnoDB发生死锁是可能的。
发生死锁后,InnoDB一般都能自动检测到,并使一个事务释放锁并退回,另一个事务获得锁,继续完成事务。但在涉及外部锁,或涉及锁的情况下,InnoDB并不能完全自动检测到死锁,这需要通过设置锁等待超时参数innodb_lock_wait_timeout来解决。需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获取所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖垮数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。
通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小、以及访问数据库的SQL语句,绝大部分都可以避免。下面就通过实例来介绍几种死锁的常用方法。
(1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序为访问表,这样可以大大降低产生死锁的机会。如果两个session访问两个表的顺序不同,发生死锁的机会就非常高!但如果以相同的顺序来访问,死锁就可能避免。
(2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低死锁的可能。
(3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应该先申请共享锁,更新时再申请排他锁,甚至死锁。
(4)在REPEATEABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...ROR UPDATE加排他锁,在没有符合该记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可以避免问题。
(5)当隔离级别为READ COMMITED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁。对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁。

尽管通过上面的设计和优化等措施,可以大减少死锁,但死锁很难完全避免。因此,在程序设计中总是捕获并处理死锁异常是一个很好的编程习惯。
如果出现死锁,可以用SHOW INNODB STATUS命令来确定最后一个死锁产生的原因和改进措施。

总结
对于MyISAM的表锁,主要有以下几点
(1)共享读锁(S)之间是兼容的,但共享读锁(S)和排他写锁(X)之间,以及排他写锁之间(X)是互斥的,也就是说读和写是串行的。
(2)在一定条件下,MyISAM允许查询和插入并发执行,我们可以利用这一点来解决应用中对同一表和插入的锁争用问题。
(3)MyISAM默认的锁调度机制是写优先,这并不一定适合所有应用,用户可以通过设置LOW_PRIPORITY_UPDATES参数,或在INSERT、UPDATE、DELETE语句中指定LOW_PRIORITY选项来调节读写锁的争用。
(4)由于表锁的锁定粒度大,读写之间又是串行的,因此,如果更新操作较多,MyISAM表可能会出现严重的锁等待,可以考虑采用InnoDB表来减少锁冲突。

对于InnoDB表,主要有以下几点
(1)InnoDB的行销是基于索引实现的,如果不通过索引访问数据,InnoDB会使用表锁。
(2)InnoDB间隙锁机制,以及InnoDB使用间隙锁的原因。
(3)在不同的隔离级别下,InnoDB的锁机制和一致性读策略不同。
(4)MySQL的恢复和复制对InnoDB锁机制和一致性读策略也有较大影响。
(5)锁冲突甚至死锁很难完全避免。
在了解InnoDB的锁特性后,用户可以通过设计和SQL调整等措施减少锁冲突和死锁,包括:
尽量使用较低的隔离级别
精心设计索引,并尽量使用索引访问数据,使加锁更精确,从而减少锁冲突的机会。
选择合理的事务大小,小事务发生锁冲突的几率也更小。
给记录集显示加锁时,最好一次性请求足够级别的锁。比如要修改数据的话,最好直接申请排他锁,而不是先申请共享锁,修改时再请求排他锁,这样容易产生死锁。
不同的程序访问一组表时,应尽量约定以相同的顺序访问各表,对一个表而言,尽可能以固定的顺序存取表中的行。这样可以大减少死锁的机会。
尽量用相等条件访问数据,这样可以避免间隙锁对并发插入的影响。
不要申请超过实际需要的锁级别;除非必须,查询时不要显示加锁。
对于一些特定的事务,可以使用表锁来提高处理速度或减少死锁的可能

关于MySQL中的表锁和行锁

2. 如何在SQLServer中锁定某行记录

锁的概述

   一. 为什么要引入锁 
  多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 
  丢失更新 
  A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统 
  脏读 
  A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致 
  不可重复读 
  A用户读取数据,随后B用户读出该数据并修改,此时A用户再读取数据时发现前后两次的值不一致 
  并发控制的主要方法是封锁,锁就是在一段时间内禁止用户做某些操作以避免产生数据不一致 
  二 锁的分类 
  锁的类别有两种分法: 
  1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁 
  MS SQL Server 使用以下资源锁模式。 
  锁模式 描述 
  共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。 
  更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。 
  排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。 
  意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 
  架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。 
  大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。 
  共享锁 
  共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。 
  更新锁 
  更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。 
  若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。 
  排它锁 
  排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。 
  意向锁 
  意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。 
  意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 
  锁模式 
  描述 
  意向共享 (IS) 通过在各资源上放置 S 锁,表明事务的意向是读取层次结构中的部分(而不是全部)底层资源。 
  意向排它 (IX) 通过在各资源上放置 X 锁,表明事务的意向是修改层次结构中的部分(而不是全部)底层资源。IX 是 IS 的超集。与意向排它共享 (SIX) 通过在各资源上放置 IX 锁,表明事务的意向是读取层次结构中的全部底层资源并修改部分(而不是全部)底层资源。允许顶层资源上的并发 IS 锁。例如,表的 SIX 锁在表上放置一个 SIX 锁(允许并发 IS 锁),在当前所修改页上放置 IX 锁(在已修改行上放置 X 锁)。虽然每个资源在一段时间内只能有一个 SIX 锁,以防止其它事务对资源进行更新,但是其它事务可以通过获取表级的 IS 锁来读取层次结构中的底层资源。 
  独占锁:只允许进行锁定操作的程序使用,其他任何对他的操作均不会被接受。执行数据更新命令时,SQL Server会自动使用独占锁。当对象上有其他锁存在时,无法对其加独占锁。 
  共享锁:共享锁锁定的资源可以被其他用户读取,但其他用户无法修改它,在执行Select时,SQL Server会对对象加共享锁。 
  更新锁:当SQL Server准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server确定要进行更新数据操作时,他会自动将更新锁换为独占锁,当对象上有其他锁存在时,无法对其加更新锁。 
  2. 从程序员的角度看:分为乐观锁和悲观锁。 
  乐观锁:完全依靠数据库来管理锁的工作。 
  悲观锁:程序员自己管理数据或对象上的锁处理。 
  MS SQL Server 使用锁在多个同时在数据库内执行修改的用户间实现悲观并发控制 
  三 锁的粒度 
  锁粒度是被封锁目标的大小,封锁粒度小则并发性高,但开销大,封锁粒度大则并发性低但开销小 
  SQL Server支持的锁粒度可以分为为行、页、键、键范围、索引、表或数据库获取锁 
  资源描述 
  RID 行标识符。用于单独锁定表中的一行。 
  键 索引中的行锁。用于保护可串行事务中的键范围。 
  页 8 千字节 (KB) 的数据页或索引页。 
  扩展盘区 相邻的八个数据页或索引页构成的一组。 
  表 包括所有数据和索引在内的整个表。 
  DB 数据库。 
  四 锁定时间的长短 
  锁保持的时间长度为保护所请求级别上的资源所需的时间长度。 
  用于保护读取操作的共享锁的保持时间取决于事务隔离级别。采用 READ COMMITTED 的默认事务隔离级别时,只在读取页的期间内控制共享锁。在扫描中,直到在扫描内的下一页上获取锁时才释放锁。如果指定 HOLDLOCK 提示或者将事务隔离级别设置为 REPEATABLE READ 或 SERIALIZABLE,则直到事务结束才释放锁。 
  根据为游标设置的并发选项,游标可以获取共享模式的滚动锁以保护提取。当需要滚动锁时,直到下一次提取或关闭游标(以先发生者为准)时才释放滚动锁。但是,如果指定 HOLDLOCK,则直到事务结束才释放滚动锁。 
  用于保护更新的排它锁将直到事务结束才释放。 
  如果一个连接试图获取一个锁,而该锁与另一个连接所控制的锁冲突,则试图获取锁的连接将一直阻塞到: 
  将冲突锁释放而且连接获取了所请求的锁。 
  连接的超时间隔已到期。默认情况下没有超时间隔,但是一些应用程序设置超时间隔以防止无限期等待 
  五 SQL Server 中锁的自定义 
  1 处理死锁和设置死锁优先级 
  死锁就是多个用户申请不同封锁,由于申请者均拥有一部分封锁权而又等待其他用户拥有的部分封锁而引起的无休止的等待可以使用SET DEADLOCK_PRIORITY控制在发生死锁情况时会话的反应方式。如果两个进程都锁定数据,并且直到其它进程释放自己的锁时,每个进程才能释放自己的锁,即发生死锁情况。 
  2 处理超时和设置锁超时持续时间。 
  @@LOCK_TIMEOUT 返回当前会话的当前锁超时设置,单位为毫秒 
  SET LOCK_TIMEOUT 设置允许应用程序设置语句等待阻塞资源的最长时间。当语句等待的时间大于 LOCK_TIMEOUT 设置时,系统将自动取消阻塞的语句,并给应用程序返回"已超过了锁请求超时时段"的 1222 号错误信息 
  示例 
  下例将锁超时期限设置为 1,800 毫秒。 
SET LOCK_TIMEOUT 1800 


  3) 设置事务隔离级别。 
  4 ) 对 SELECT、INSERT、UPDATE 和 DELETE 语句使用表级锁定提示。 
  5) 配置索引的锁定粒度 
  可以使用 sp_indexoption 系统存储过程来设置用于索引的锁定粒度 
六 查看锁的信息   1 执行 EXEC SP_LOCK 报告有关锁的信息 
  2 查询分析器中按Ctrl+2可以看到锁的信息 
  七 使用注意事项 
  如何避免死锁 
  1 使用事务时,尽量缩短事务的逻辑处理过程,及早提交或回滚事务; 
  2 设置死锁超时参数为合理范围,如:3分钟-10分种;超过时间,自动放弃本次操作,避免进程悬挂; 
  3 优化程序,检查并避免死锁现象出现; 
  4 .对所有的脚本和SP都要仔细测试,在正是版本之前。 
  5 所有的SP都要有错误处理(通过@error) 
  6 一般不要修改SQL Server事务的默认级别。不推荐强行加锁 
  八 几个有关锁的问题 
  1 如何锁一个表的某一行 
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTEDSELECT * FROM table ROWLOCK WHERE id = 
1 

  2 锁定数据库的一个表 
SELECT * FROM table WITH (HOLDLOCK) 

  加锁语句: 
sybase:update 表 set col1=col1 where 1=0 ;MS SQL:select col1 from 表 (tablockx) where 1=0 ;oracle:LOCK TABLE 表 IN EXCLUSIVE MODE ; 

  加锁后其它人不可操作,直到加锁用户解锁,用commit或rollback解锁 

  几个例子帮助大家加深印象,设table1(A,B,C) 
A B C 
a1 b1 c1 
a2 b2 c2 
a3 b3 c3 


  1)排它锁 
  新建两个连接,在第一个连接中执行以下语句 
begin tranupdate table1set A='aa'where B='b2'waitfor delay '00:00:30' 
--等待30秒commit tran 

  在第二个连接中执行以下语句 
begin transelect * from table1where B='b2'commit tran 

  若同时执行上述两个语句,则select查询必须等待update执行完毕才能执行即要等待30秒 
  2)共享锁 
  在第一个连接中执行以下语句 
begin transelect * from table1 holdlock -holdlock人为加锁where B='b2'waitfor delay '00:00:30' 
--等待30秒commit tran 

  在第二个连接中执行以下语句 
begin transelect A,C from table1where B='b2'update table1set A='aa'where B='b2'commit tran 

  若同时执行上述两个语句,则第二个连接中的select查询可以执行,而update必须等待第一个事务释放共享锁转为排它锁后才能执行 即要等待30秒 
  3)死锁 
  增设table2(D,E) 
D E 

d1 e1 
d2 e2 



  在第一个连接中执行以下语句 
begin tranupdate table1set A='aa'where B='b2'waitfor delay '00:00:30'update table2set D='d5'where E='e1'commit tran 

  在第二个连接中执行以下语句 
begin tranupdate table2set D='d5'where E='e1'waitfor delay '00:00:10'update table1set A='aa'where B='b2'commit tran 

  同时执行,系统会检测出死锁,并中止进程 
  补充一点: 
  SQL Server 2000支持的表级锁定提示 
  HOLDLOCK 持有共享锁,直到整个事务完成,应该在被锁对象不需要时立即释放,等于SERIALIZABLE事务隔离级别 
  NOLOCK 语句执行时不发出共享锁,允许脏读 ,等于 READ UNCOMMITTED事务隔离级别 
  PAGLOCK 在使用一个表锁的地方用多个页锁 
  READPAST 让SQL Server跳过任何锁定行,执行事务,适用于READ UNCOMMITTED事务隔离级别只跳过RID锁,不跳过页,区域和表锁 
  ROWLOCK 强制使用行锁 
  TABLOCKX 强制使用独占表级锁,这个锁在事务期间阻止任何其他事务使用这个表 
  UPLOCK 强制在读表时使用更新而不用共享锁 
  应用程序锁: 
  应用程序锁就是客户端代码生成的锁,而不是SQL Server本身生成的锁 
  处理应用程序锁的两个过程 
  sp_getapplock 锁定应用程序资源 
  sp_releaseapplock 为应用程序资源解锁 
  注意: 锁定数据库的一个表的区别 
  SELECT * FROM table WITH (HOLDLOCK) 其他事务可以读取表,但不能更新删除 
  SELECT * FROM table WITH (TABLOCKX) 其他事务不能读取表,更新和删除

3. 事务和锁机制是什么关系? 开启事务就自动加锁了吗? 菜鸟,谢谢了。

1、事务与锁是不同的。事务具有ACID(原子性、一致性、隔离性和持久性),锁是用于解决隔离性的一种机制。
2、事务的隔离级别通过锁的机制来实现。另外锁有不同的粒度,同时事务也是有不同的隔离级别的。
3、开启事务就自动加锁。
ql规范定义的事务的隔离级别:
1.READ UNCOMMITTED(读取未提交内容)
所有事务可以看到未提交事务的执行结果,本隔离级别很少用到实际应用中,读取未提交的数据,又称为“脏读”。
2.READ COMMITTED(读取提交内容)
大多数数据库的默认隔离级别是此级别,但不是MySQL默认的。一个事务在开始的时候只能看见已提交事务所做的改变。一个事务从开始到提交前所做的任何改变都是不可见的,除非提交。这种隔离级别也称为不可重复读。
3.REPEATABLE READ(可重复读)
此隔离级别是为了解决可重复读隔离级别导致的问题即一个事务多个实例并发读取数据时会看到不同的结果。此隔离级别不会看到其他事务提交后的结果,即事务即使提交了我也看不到。此级别也称为“幻读”。
4.SERIALIZABLE(可串行化)
可串行化是最高的隔离级别,它通过强制事务排序,使之不可重读,解决了幻读的问题。此隔离级别会在每个读的数据行上加共享锁,使用这种隔离级别会产生大量的超时现象,一般实际开发中不会用到。
mysql加锁机制:
根据类型可分为共享锁(SHARED LOCK)和排他锁(EXCLUSIVE LOCK)或者叫读锁(READ LOCK)和写锁(WRITE LOCK)。
根据粒度划分又分表锁和行锁。表锁由数据库服务器实现,行锁由存储引擎实现。
mysql提供了3种事务型存储引擎,InnDB、NDB Cluster和Falcon。
一个事务执行的任何过程中都可以获得锁,但是只有事务提交或回滚的时候才释放这些锁。这些都是隐式锁定,也可以显式锁定,InnoDB支持显式锁定,例如:
SELECT .... LOCK IN SHARE MODE (加共享锁)
SELECT .....FOR UPDATE(加排他锁)
多版本并发控制(重要):
Mysql的事务存储引擎不是简单实用行加锁机制,而是叫多版本并发控制(MVCC)技术,和行加锁机制关联实用。以便应对更高的并发,当然是以消耗性能作为代价。
每种存储引擎对MVCC的实现方式不同,InnoDB引擎的简单实现方式如下:
InnoDB通过为每个数据航增加两个隐含值的方式来实现。这两个隐含值记录了行的创建时间,以及过期时间。每一行存储事件发生时的系统版本号。每一次开始一个新事务时版本号会自动加1,每个事务都会保存开始时的版本号,每个查询根据事务的版本号来查询结果。
MySQL使用以下几种机制进行隔离性的实现:         a.锁机制             通过使用加锁机制,使用其它事务无法到读某事务末提交前的数据更新,解决脏读问题;             mySQL 有:共享锁,排他锁,根据粒度,有行锁,表锁。         b.MVCC机制:          事务存储引擎使用多版本并发控制(MVCC)技术,和行加锁机制关联使用         MySQL 的InnoDB,XtraDB 引擎通过 使用MVCC 来解决幻读问题。

事务和锁机制是什么关系? 开启事务就自动加锁了吗? 菜鸟,谢谢了。

4. SQL SERVER 中如何使用行锁? 为什么我写的行锁锁不住啊?高手快来吧

给你个最详细的吧  可能有你要的内容
锁的概述 

一. 为什么要引入锁 

多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 

丢失更新 
A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统 

脏读 
A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致 

不可重复读 
A用户读取数据,随后B用户读出该数据并修改,此时A用户再读取数据时发现前后两次的值不一致 

并发控制的主要方法是封锁,锁就是在一段时间内禁止用户做某些操作以避免产生数据不一致 

二 锁的分类 

锁的类别有两种分法: 

1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁 

MS-SQL Server 使用以下资源锁模式。 

锁模式 描述 
共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。 
更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。 
排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。 
意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 
架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。 
大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。 

共享锁 
共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。 

更新锁 
更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。 

若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。 

排它锁 
排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。 

意向锁 
意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。 

意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 

锁模式 描述 
意向共享 (IS) 通过在各资源上放置 S 锁,表明事务的意向是读取层次结构中的部分(而不是全部)底层资源。 
意向排它 (IX) 通过在各资源上放置 X 锁,表明事务的意向是修改层次结构中的部分(而不是全部)底层资源。IX 是 IS 的超集。 
与意向排它共享 (SIX) 通过在各资源上放置 IX 锁,表明事务的意向是读取层次结构中的全部底层资源并修改部分(而不是全部)底层资源。允许顶层资源上的并发 IS 锁。例如,表的 SIX 锁在表上放置一个 SIX 锁(允许并发 IS 锁),在当前所修改页上放置 IX 锁(在已修改行上放置 X 锁)。虽然每个资源在一段时间内只能有一个 SIX 锁,以防止其它事务对资源进行更新,但是其它事务可以通过获取表级的 IS 锁来读取层次结构中的底层资源。 

独占锁:只允许进行锁定操作的程序使用,其他任何对他的操作均不会被接受。执行数据更新命令时,SQL Server会自动使用独占锁。当对象上有其他锁存在时,无法对其加独占锁。 
共享锁:共享锁锁定的资源可以被其他用户读取,但其他用户无法修改它,在执行Select时,SQL Server会对对象加共享锁。 
更新锁:当SQL Server准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server确定要进行更新数据操作时,他会自动将更新锁换为独占锁,当对象上有其他锁存在时,无法对其加更新锁。 

2. 从程序员的角度看:分为乐观锁和悲观锁。 
乐观锁:完全依靠数据库来管理锁的工作。 
悲观锁:程序员自己管理数据或对象上的锁处理。 

MS-SQLSERVER 使用锁在多个同时在数据库内执行修改的用户间实现悲观并发控制 

三 锁的粒度 
锁粒度是被封锁目标的大小,封锁粒度小则并发性高,但开销大,封锁粒度大则并发性低但开销小 

SQL Server支持的锁粒度可以分为为行、页、键、键范围、索引、表或数据库获取锁 

资源 描述 
RID 行标识符。用于单独锁定表中的一行。 
键 索引中的行锁。用于保护可串行事务中的键范围。 
页 8 千字节 (KB) 的数据页或索引页。 
扩展盘区 相邻的八个数据页或索引页构成的一组。 
表 包括所有数据和索引在内的整个表。 
DB 数据库。 

四 锁定时间的长短 

锁保持的时间长度为保护所请求级别上的资源所需的时间长度。 

用于保护读取操作的共享锁的保持时间取决于事务隔离级别。采用 READ COMMITTED 的默认事务隔离级别时,只在读取页的期间内控制共享锁。在扫描中,直到在扫描内的下一页上获取锁时才释放锁。如果指定 HOLDLOCK 提示或者将事务隔离级别设置为 REPEATABLE READ 或 SERIALIZABLE,则直到事务结束才释放锁。 

根据为游标设置的并发选项,游标可以获取共享模式的滚动锁以保护提取。当需要滚动锁时,直到下一次提取或关闭游标(以先发生者为准)时才释放滚动锁。但是,如果指定 HOLDLOCK,则直到事务结束才释放滚动锁。 

用于保护更新的排它锁将直到事务结束才释放。 
如果一个连接试图获取一个锁,而该锁与另一个连接所控制的锁冲突,则试图获取锁的连接将一直阻塞到: 

将冲突锁释放而且连接获取了所请求的锁。 

连接的超时间隔已到期。默认情况下没有超时间隔,但是一些应用程序设置超时间隔以防止无限期等待 

五 SQL Server 中锁的自定义 

1 处理死锁和设置死锁优先级 

死锁就是多个用户申请不同封锁,由于申请者均拥有一部分封锁权而又等待其他用户拥有的部分封锁而引起的无休止的等待 

可以使用SET DEADLOCK_PRIORITY控制在发生死锁情况时会话的反应方式。如果两个进程都锁定数据,并且直到其它进程释放自己的锁时,每个进程才能释放自己的锁,即发生死锁情况。 

2 处理超时和设置锁超时持续时间。 

@@LOCK_TIMEOUT 返回当前会话的当前锁超时设置,单位为毫秒 

SET LOCK_TIMEOUT 设置允许应用程序设置语句等待阻塞资源的最长时间。当语句等待的时间大于 LOCK_TIMEOUT 设置时,系统将自动取消阻塞的语句,并给应用程序返回"已超过了锁请求超时时段"的 1222 号错误信息 

示例 
下例将锁超时期限设置为 1,800 毫秒。 
SET LOCK_TIMEOUT 1800 

3) 设置事务隔离级别。 

4 ) 对 SELECT、INSERT、UPDATE 和 DELETE 语句使用表级锁定提示。 

5) 配置索引的锁定粒度 
可以使用 sp_indexoption 系统存储过程来设置用于索引的锁定粒度 

六 查看锁的信息 

1 执行 EXEC SP_LOCK 报告有关锁的信息 
2 查询分析器中按Ctrl+2可以看到锁的信息 

七 使用注意事项 

如何避免死锁 
1 使用事务时,尽量缩短事务的逻辑处理过程,及早提交或回滚事务; 
2 设置死锁超时参数为合理范围,如:3分钟-10分种;超过时间,自动放弃本次操作,避免进程悬挂; 
3 优化程序,检查并避免死锁现象出现; 
4 .对所有的脚本和SP都要仔细测试,在正是版本之前。 
5 所有的SP都要有错误处理(通过@error) 
6 一般不要修改SQL SERVER事务的默认级别。不推荐强行加锁 

解决问题 如何对行 表 数据库加锁 

八 几个有关锁的问题 

1 如何锁一个表的某一行 

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED 

SELECT * FROM table ROWLOCK WHERE id = 1 

2 锁定数据库的一个表 

SELECT * FROM table WITH (HOLDLOCK) 

加锁语句: 
sybase: 
update 表 set col1=col1 where 1=0 ; 
MSSQL: 
select col1 from 表 (tablockx) where 1=0 ; 
oracle: 
LOCK TABLE 表 IN EXCLUSIVE MODE ; 
加锁后其它人不可操作,直到加锁用户解锁,用commit或rollback解锁 


几个例子帮助大家加深印象 
设table1(A,B,C) 
A B C 
a1 b1 c1 
a2 b2 c2 
a3 b3 c3 

1)排它锁 
新建两个连接 
在第一个连接中执行以下语句 
begin tran 
update table1 
set A='aa' 
where B='b2' 
waitfor delay '00:00:30' --等待30秒 
commit tran 
在第二个连接中执行以下语句 
begin tran 
select * from table1 
where B='b2' 
commit tran 

若同时执行上述两个语句,则select查询必须等待update执行完毕才能执行即要等待30秒 

2)共享锁 
在第一个连接中执行以下语句 
begin tran 
select * from table1 holdlock -holdlock人为加锁 
where B='b2' 
waitfor delay '00:00:30' --等待30秒 
commit tran 

在第二个连接中执行以下语句 
begin tran 
select A,C from table1 
where B='b2' 
update table1 
set A='aa' 
where B='b2' 
commit tran 

若同时执行上述两个语句,则第二个连接中的select查询可以执行 
而update必须等待第一个事务释放共享锁转为排它锁后才能执行 即要等待30秒 

3)死锁 
增设table2(D,E) 
D E 
d1 e1 
d2 e2 
在第一个连接中执行以下语句 
begin tran 
update table1 
set A='aa' 
where B='b2' 
waitfor delay '00:00:30' 
update table2 
set D='d5' 
where E='e1' 
commit tran 

在第二个连接中执行以下语句 
begin tran 
update table2 
set D='d5' 
where E='e1' 
waitfor delay '00:00:10' 
update table1 
set A='aa' 
where B='b2' 
commit tran 

同时执行,系统会检测出死锁,并中止进程 

补充一点: 
Sql Server2000支持的表级锁定提示 

HOLDLOCK 持有共享锁,直到整个事务完成,应该在被锁对象不需要时立即释放,等于SERIALIZABLE事务隔离级别 

NOLOCK 语句执行时不发出共享锁,允许脏读 ,等于 READ UNCOMMITTED事务隔离级别 

PAGLOCK 在使用一个表锁的地方用多个页锁 

READPAST 让sql server跳过任何锁定行,执行事务,适用于READ UNCOMMITTED事务隔离级别只跳过RID锁,不跳过页,区域和表锁 

ROWLOCK 强制使用行锁 

TABLOCKX 强制使用独占表级锁,这个锁在事务期间阻止任何其他事务使用这个表 

UPLOCK 强制在读表时使用更新而不用共享锁 

应用程序锁: 
应用程序锁就是客户端代码生成的锁,而不是sql server本身生成的锁 

处理应用程序锁的两个过程 

sp_getapplock 锁定应用程序资源 

sp_releaseapplock 为应用程序资源解锁 

注意: 锁定数据库的一个表的区别 

SELECT * FROM table WITH (HOLDLOCK) 其他事务可以读取表,但不能更新删除 

SELECT * FROM table WITH (TABLOCKX) 其他事务不能读取表,更新和删除
参考资料:

5. 事务和锁机制是什么关系? 开启事务就自动加锁了吗?

1、事务与锁是不同的。事务具有ACID(原子性、一致性、隔离性和持久性),锁是用于解决隔离性的一种机制。
2、事务的隔离级别通过锁的机制来实现。另外锁有不同的粒度,同时事务也是有不同的隔离级别的。
3、开启事务就自动加锁。
ql规范定义的事务的隔离级别:
1.READ UNCOMMITTED(读取未提交内容)
所有事务可以看到未提交事务的执行结果,本隔离级别很少用到实际应用中,读取未提交的数据,又称为“脏读”。
2.READ COMMITTED(读取提交内容)
大多数数据库的默认隔离级别是此级别,但不是MySQL默认的。一个事务在开始的时候只能看见已提交事务所做的改变。一个事务从开始到提交前所做的任何改变都是不可见的,除非提交。这种隔离级别也称为不可重复读。
3.REPEATABLE READ(可重复读)
此隔离级别是为了解决可重复读隔离级别导致的问题即一个事务多个实例并发读取数据时会看到不同的结果。此隔离级别不会看到其他事务提交后的结果,即事务即使提交了我也看不到。此级别也称为“幻读”。
4.SERIALIZABLE(可串行化)
可串行化是最高的隔离级别,它通过强制事务排序,使之不可重读,解决了幻读的问题。此隔离级别会在每个读的数据行上加共享锁,使用这种隔离级别会产生大量的超时现象,一般实际开发中不会用到。
mysql加锁机制:
根据类型可分为共享锁(SHARED LOCK)和排他锁(EXCLUSIVE LOCK)或者叫读锁(READ LOCK)和写锁(WRITE LOCK)。
根据粒度划分又分表锁和行锁。表锁由数据库服务器实现,行锁由存储引擎实现。
mysql提供了3种事务型存储引擎,InnDB、NDB Cluster和Falcon。
一个事务执行的任何过程中都可以获得锁,但是只有事务提交或回滚的时候才释放这些锁。这些都是隐式锁定,也可以显式锁定,InnoDB支持显式锁定,例如:
SELECT .... LOCK IN SHARE MODE (加共享锁)
SELECT .....FOR UPDATE(加排他锁)
多版本并发控制(重要):
Mysql的事务存储引擎不是简单实用行加锁机制,而是叫多版本并发控制(MVCC)技术,和行加锁机制关联实用。以便应对更高的并发,当然是以消耗性能作为代价。
每种存储引擎对MVCC的实现方式不同,InnoDB引擎的简单实现方式如下:
InnoDB通过为每个数据航增加两个隐含值的方式来实现。这两个隐含值记录了行的创建时间,以及过期时间。每一行存储事件发生时的系统版本号。每一次开始一个新事务时版本号会自动加1,每个事务都会保存开始时的版本号,每个查询根据事务的版本号来查询结果。
MySQL使用以下几种机制进行隔离性的实现:         a.锁机制             通过使用加锁机制,使用其它事务无法到读某事务末提交前的数据更新,解决脏读问题;             mySQL 有:共享锁,排他锁,根据粒度,有行锁,表锁。         b.MVCC机制:          事务存储引擎使用多版本并发控制(MVCC)技术,和行加锁机制关联使用         MySQL 的InnoDB,XtraDB 引擎通过 使用MVCC 来解决幻读问题。

事务和锁机制是什么关系? 开启事务就自动加锁了吗?

6. 事务 ( 进程 ID 60) 与另一个进程被死锁在锁资源上,并且已被选作死锁牺牲品。请重新运行 该事务。

根据2中提供的sql,查看那个spid处于wait状态,然后用kill spid来干掉。当然这只是一种临时解决方案,我们总不能在遇到死锁就在用户的生产环境上排查死锁,Kill sp,我们应该考虑如何去避免死锁。
使用SET LOCK_TIMEOUT timeout_period(单位为毫秒)来设定锁请求超时。默认情况下,数据库没有超时期限timeout_period值为-1,可以用SELECT @@LOCK_TIMEOUT来查看该值,即无限期等待。当请求锁超过timeout_period时,将返回错误。
timeout_period值为0时表示根本不等待,一遇到锁就返回消息。设置锁请求超时,破环了死锁的第二个必要条件(请求与保持条件)。
服务器: 消息1222,级别16,状态50,行1已超过了锁请求超时时段。
SQL Server内部有一个锁监视器线程执行死锁检查,锁监视器对特定线程启动死锁搜索时,会标识线程正在等待的资源;然后查找特定资源的所有者,并递归地继续执行对那些线程的死锁搜索,直到找到一个构成死锁条件的循环。检测到死锁后,数据库引擎 选择运行回滚开销最小的事务的会话作为死锁牺牲品,返回1205 错误,回滚死锁牺牲品的事务并释放该事务持有的所有锁,使其他线程的事务可以请求资源并继续运行。

7. Sql server08数据库执行什么操作的时候会加S锁,IX锁和SIX锁

一. 为什么要引入锁 

多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 

丢失更新
A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统 

脏读
A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致 

不可重复读
A用户读取数据,随后B用户读出该数据并修改,此时A用户再读取数据时发现前后两次的值不一致 

并发控制的主要方法是封锁,锁就是在一段时间内禁止用户做某些操作以避免产生数据不一致 

二 锁的分类 

锁的类别有两种分法: 

1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁 

MS-SQL Server 使用以下资源锁模式。 

锁模式 描述 
共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。 
更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。 
排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。 
意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 
架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。 
大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。 

共享锁
共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。 

更新锁
更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。 

若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。 

排它锁
排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。 

意向锁
意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。 

意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 

锁模式 描述 
意向共享 (IS) 通过在各资源上放置 S 锁,表明事务的意向是读取层次结构中的部分(而不是全部)底层资源。 
意向排它 (IX) 通过在各资源上放置 X 锁,表明事务的意向是修改层次结构中的部分(而不是全部)底层资源。IX 是 IS 的超集。 
与意向排它共享 (SIX) 通过在各资源上放置 IX 锁,表明事务的意向是读取层次结构中的全部底层资源并修改部分(而不是全部)底层资源。允许顶层资源上的并发 IS 锁。例如,表的 SIX 锁在表上放置一个 SIX 锁(允许并发 IS 锁),在当前所修改页上放置 IX 锁(在已修改行上放置 X 锁)。虽然每个资源在一段时间内只能有一个 SIX 锁,以防止其它事务对资源进行更新,但是其它事务可以通过获取表级的 IS 锁来读取层次结构中的底层资源。 

独占锁:只允许进行锁定操作的程序使用,其他任何对他的操作均不会被接受。执行数据更新命令时,SQL Server会自动使用独占锁。当对象上有其他锁存在时,无法对其加独占锁。
共享锁:共享锁锁定的资源可以被其他用户读取,但其他用户无法修改它,在执行Select时,SQL Server会对对象加共享锁。
更新锁:当SQL Server准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server确定要进行更新数据操作时,他会自动将更新锁换为独占锁,当对象上有其他锁存在时,无法对其加更新锁。 

2. 从程序员的角度看:分为乐观锁和悲观锁。
乐观锁:完全依靠数据库来管理锁的工作。
悲观锁:程序员自己管理数据或对象上的锁处理。 

MS-SQLSERVER 使用锁在多个同时在数据库内执行修改的用户间实现悲观并发控制 

三 锁的粒度
锁粒度是被封锁目标的大小,封锁粒度小则并发性高,但开销大,封锁粒度大则并发性低但开销小 

SQL Server支持的锁粒度可以分为为行、页、键、键范围、索引、表或数据库获取锁 

资源 描述 
RID 行标识符。用于单独锁定表中的一行。 
键 索引中的行锁。用于保护可串行事务中的键范围。 
页 8 千字节 (KB) 的数据页或索引页。 
扩展盘区 相邻的八个数据页或索引页构成的一组。 
表 包括所有数据和索引在内的整个表。 
DB 数据库。 

四 锁定时间的长短 

锁保持的时间长度为保护所请求级别上的资源所需的时间长度。 

用于保护读取操作的共享锁的保持时间取决于事务隔离级别。采用 READ COMMITTED 的默认事务隔离级别时,只在读取页的期间内控制共享锁。在扫描中,直到在扫描内的下一页上获取锁时才释放锁。如果指定 HOLDLOCK 提示或者将事务隔离级别设置为 REPEATABLE READ 或 SERIALIZABLE,则直到事务结束才释放锁。 

根据为游标设置的并发选项,游标可以获取共享模式的滚动锁以保护提取。当需要滚动锁时,直到下一次提取或关闭游标(以先发生者为准)时才释放滚动锁。但是,如果指定 HOLDLOCK,则直到事务结束才释放滚动锁。 

用于保护更新的排它锁将直到事务结束才释放。 
如果一个连接试图获取一个锁,而该锁与另一个连接所控制的锁冲突,则试图获取锁的连接将一直阻塞到: 

将冲突锁释放而且连接获取了所请求的锁。 

连接的超时间隔已到期。默认情况下没有超时间隔,但是一些应用程序设置超时间隔以防止无限期等待 

五 SQL Server 中锁的自定义 

1 处理死锁和设置死锁优先级 

死锁就是多个用户申请不同封锁,由于申请者均拥有一部分封锁权而又等待其他用户拥有的部分封锁而引起的无休止的等待 

可以使用SET DEADLOCK_PRIORITY控制在发生死锁情况时会话的反应方式。如果两个进程都锁定数据,并且直到其它进程释放自己的锁时,每个进程才能释放自己的锁,即发生死锁情况。 

2 处理超时和设置锁超时持续时间。 

@@LOCK_TIMEOUT 返回当前会话的当前锁超时设置,单位为毫秒 

SET LOCK_TIMEOUT 设置允许应用程序设置语句等待阻塞资源的最长时间。当语句等待的时间大于 LOCK_TIMEOUT 设置时,系统将自动取消阻塞的语句,并给应用程序返回"已超过了锁请求超时时段"的 1222 号错误信息 

示例 
下例将锁超时期限设置为 1,800 毫秒。
SET LOCK_TIMEOUT 1800 

3) 设置事务隔离级别。 

4 ) 对 SELECT、INSERT、UPDATE 和 DELETE 语句使用表级锁定提示。 

5) 配置索引的锁定粒度
可以使用 sp_indexoption 系统存储过程来设置用于索引的锁定粒度 

六 查看锁的信息 

1 执行 EXEC SP_LOCK 报告有关锁的信息
2 查询分析器中按Ctrl+2可以看到锁的信息 

七 使用注意事项 

如何避免死锁
1 使用事务时,尽量缩短事务的逻辑处理过程,及早提交或回滚事务;
2 设置死锁超时参数为合理范围,如:3分钟-10分种;超过时间,自动放弃本次操作,避免进程悬挂;
3 优化程序,检查并避免死锁现象出现;
4 .对所有的脚本和SP都要仔细测试,在正是版本之前。
5 所有的SP都要有错误处理(通过@error)
6 一般不要修改SQL SERVER事务的默认级别。不推荐强行加锁 

解决问题 如何对行 表 数据库加锁 

八 几个有关锁的问题 

1 如何锁一个表的某一行 

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED 

SELECT * FROM table ROWLOCK WHERE id = 1 

2 锁定数据库的一个表 

SELECT * FROM table WITH (HOLDLOCK) 

加锁语句:
sybase:
update 表 set col1=col1 where 1=0 ;
MSSQL:
select col1 from 表 (tablockx) where 1=0 ;
oracle:
LOCK TABLE 表 IN EXCLUSIVE MODE ;
加锁后其它人不可操作,直到加锁用户解锁,用commit或rollback解锁 

几个例子帮助大家加深印象
设table1(A,B,C)
A B C
a1 b1 c1
a2 b2 c2
a3 b3 c3 

1)排它锁
新建两个连接
在第一个连接中执行以下语句
begin tran
update table1
set A='aa'
where B='b2'
waitfor delay '00:00:30' --等待30秒
commit tran
在第二个连接中执行以下语句
begin tran
select * from table1
where B='b2' 
commit tran 

若同时执行上述两个语句,则select查询必须等待update执行完毕才能执行即要等待30秒 

2)共享锁
在第一个连接中执行以下语句
begin tran
select * from table1 holdlock -holdlock人为加锁
where B='b2' 
waitfor delay '00:00:30' --等待30秒
commit tran 

在第二个连接中执行以下语句
begin tran
select A,C from table1
where B='b2' 
update table1
set A='aa'
where B='b2' 
commit tran 

若同时执行上述两个语句,则第二个连接中的select查询可以执行
而update必须等待第一个事务释放共享锁转为排它锁后才能执行 即要等待30秒 

3)死锁
增设table2(D,E)
D E
d1 e1
d2 e2
在第一个连接中执行以下语句
begin tran
update table1
set A='aa'
where B='b2' 
waitfor delay '00:00:30'
update table2
set D='d5'
where E='e1' 
commit tran

在第二个连接中执行以下语句
begin tran
update table2
set D='d5'
where E='e1' 
waitfor delay '00:00:10'
update table1
set A='aa'
where B='b2' 
commit tran 

同时执行,系统会检测出死锁,并中止进程 

补充一点:
Sql Server2000支持的表级锁定提示 

HOLDLOCK 持有共享锁,直到整个事务完成,应该在被锁对象不需要时立即释放,等于SERIALIZABLE事务隔离级别 

NOLOCK 语句执行时不发出共享锁,允许脏读 ,等于 READ UNCOMMITTED事务隔离级别 

PAGLOCK 在使用一个表锁的地方用多个页锁 

READPAST 让sql server跳过任何锁定行,执行事务,适用于READ UNCOMMITTED事务隔离级别只跳过RID锁,不跳过页,区域和表锁 

ROWLOCK 强制使用行锁 

TABLOCKX 强制使用独占表级锁,这个锁在事务期间阻止任何其他事务使用这个表 

UPLOCK 强制在读表时使用更新而不用共享锁 

应用程序锁:
应用程序锁就是客户端代码生成的锁,而不是sql server本身生成的锁 

处理应用程序锁的两个过程 

sp_getapplock 锁定应用程序资源 

sp_releaseapplock 为应用程序资源解锁 

注意: 锁定数据库的一个表的区别 

SELECT * FROM table WITH (HOLDLOCK) 其他事务可以读取表,但不能更新删除 

SELECT * FROM table WITH (TABLOCKX) 其他事务不能读取表,更新和删除

Sql server08数据库执行什么操作的时候会加S锁,IX锁和SIX锁

8. 使用SQL Server数据库,如何对数据项加S锁或X锁呢??

锁的概述 

一. 为什么要引入锁 

多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 

丢失更新
A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统 

脏读
A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致 

不可重复读
A用户读取数据,随后B用户读出该数据并修改,此时A用户再读取数据时发现前后两次的值不一致 

并发控制的主要方法是封锁,锁就是在一段时间内禁止用户做某些操作以避免产生数据不一致 

二 锁的分类 

锁的类别有两种分法: 

1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁 

MS-SQL Server 使用以下资源锁模式。 

锁模式 描述 
共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。 
更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。 
排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。 
意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 
架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。 
大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。 

共享锁
共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。 

更新锁
更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。 

若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。 

排它锁
排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。 

意向锁
意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。 

意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 

锁模式 描述 
意向共享 (IS) 通过在各资源上放置 S 锁,表明事务的意向是读取层次结构中的部分(而不是全部)底层资源。 
意向排它 (IX) 通过在各资源上放置 X 锁,表明事务的意向是修改层次结构中的部分(而不是全部)底层资源。IX 是 IS 的超集。 
与意向排它共享 (SIX) 通过在各资源上放置 IX 锁,表明事务的意向是读取层次结构中的全部底层资源并修改部分(而不是全部)底层资源。允许顶层资源上的并发 IS 锁。例如,表的 SIX 锁在表上放置一个 SIX 锁(允许并发 IS 锁),在当前所修改页上放置 IX 锁(在已修改行上放置 X 锁)。虽然每个资源在一段时间内只能有一个 SIX 锁,以防止其它事务对资源进行更新,但是其它事务可以通过获取表级的 IS 锁来读取层次结构中的底层资源。 

独占锁:只允许进行锁定操作的程序使用,其他任何对他的操作均不会被接受。执行数据更新命令时,SQL Server会自动使用独占锁。当对象上有其他锁存在时,无法对其加独占锁。
共享锁:共享锁锁定的资源可以被其他用户读取,但其他用户无法修改它,在执行Select时,SQL Server会对对象加共享锁。
更新锁:当SQL Server准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server确定要进行更新数据操作时,他会自动将更新锁换为独占锁,当对象上有其他锁存在时,无法对其加更新锁。 

2. 从程序员的角度看:分为乐观锁和悲观锁。
乐观锁:完全依靠数据库来管理锁的工作。
悲观锁:程序员自己管理数据或对象上的锁处理。 

MS-SQLSERVER 使用锁在多个同时在数据库内执行修改的用户间实现悲观并发控制 

三 锁的粒度
锁粒度是被封锁目标的大小,封锁粒度小则并发性高,但开销大,封锁粒度大则并发性低但开销小 

SQL Server支持的锁粒度可以分为为行、页、键、键范围、索引、表或数据库获取锁 

资源 描述 
RID 行标识符。用于单独锁定表中的一行。 
键 索引中的行锁。用于保护可串行事务中的键范围。 
页 8 千字节 (KB) 的数据页或索引页。 
扩展盘区 相邻的八个数据页或索引页构成的一组。 
表 包括所有数据和索引在内的整个表。 
DB 数据库。 

四 锁定时间的长短 

锁保持的时间长度为保护所请求级别上的资源所需的时间长度。 

用于保护读取操作的共享锁的保持时间取决于事务隔离级别。采用 READ COMMITTED 的默认事务隔离级别时,只在读取页的期间内控制共享锁。在扫描中,直到在扫描内的下一页上获取锁时才释放锁。如果指定 HOLDLOCK 提示或者将事务隔离级别设置为 REPEATABLE READ 或 SERIALIZABLE,则直到事务结束才释放锁。 

根据为游标设置的并发选项,游标可以获取共享模式的滚动锁以保护提取。当需要滚动锁时,直到下一次提取或关闭游标(以先发生者为准)时才释放滚动锁。但是,如果指定 HOLDLOCK,则直到事务结束才释放滚动锁。 

用于保护更新的排它锁将直到事务结束才释放。 
如果一个连接试图获取一个锁,而该锁与另一个连接所控制的锁冲突,则试图获取锁的连接将一直阻塞到: 

将冲突锁释放而且连接获取了所请求的锁。 

连接的超时间隔已到期。默认情况下没有超时间隔,但是一些应用程序设置超时间隔以防止无限期等待 

五 SQL Server 中锁的自定义 

1 处理死锁和设置死锁优先级 

死锁就是多个用户申请不同封锁,由于申请者均拥有一部分封锁权而又等待其他用户拥有的部分封锁而引起的无休止的等待 

可以使用SET DEADLOCK_PRIORITY控制在发生死锁情况时会话的反应方式。如果两个进程都锁定数据,并且直到其它进程释放自己的锁时,每个进程才能释放自己的锁,即发生死锁情况。 

2 处理超时和设置锁超时持续时间。 

@@LOCK_TIMEOUT 返回当前会话的当前锁超时设置,单位为毫秒 

SET LOCK_TIMEOUT 设置允许应用程序设置语句等待阻塞资源的最长时间。当语句等待的时间大于 LOCK_TIMEOUT 设置时,系统将自动取消阻塞的语句,并给应用程序返回"已超过了锁请求超时时段"的 1222 号错误信息 

示例 
下例将锁超时期限设置为 1,800 毫秒。
SET LOCK_TIMEOUT 1800 

3) 设置事务隔离级别。 

4 ) 对 SELECT、INSERT、UPDATE 和 DELETE 语句使用表级锁定提示。 

5) 配置索引的锁定粒度
可以使用 sp_indexoption 系统存储过程来设置用于索引的锁定粒度 

六 查看锁的信息 

1 执行 EXEC SP_LOCK 报告有关锁的信息
2 查询分析器中按Ctrl+2可以看到锁的信息 

七 使用注意事项 

如何避免死锁
1 使用事务时,尽量缩短事务的逻辑处理过程,及早提交或回滚事务;
2 设置死锁超时参数为合理范围,如:3分钟-10分种;超过时间,自动放弃本次操作,避免进程悬挂;
3 优化程序,检查并避免死锁现象出现;
4 .对所有的脚本和SP都要仔细测试,在正是版本之前。
5 所有的SP都要有错误处理(通过@error)
6 一般不要修改SQL SERVER事务的默认级别。不推荐强行加锁 

解决问题 如何对行 表 数据库加锁 

八 几个有关锁的问题 

1 如何锁一个表的某一行 

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED 

SELECT * FROM table ROWLOCK WHERE id = 1 

2 锁定数据库的一个表 

SELECT * FROM table WITH (HOLDLOCK) 

加锁语句:
sybase:
update 表 set col1=col1 where 1=0 ;
MSSQL:
select col1 from 表 (tablockx) where 1=0 ;
oracle:
LOCK TABLE 表 IN EXCLUSIVE MODE ;
加锁后其它人不可操作,直到加锁用户解锁,用commit或rollback解锁 


几个例子帮助大家加深印象
设table1(A,B,C)
A B C
a1 b1 c1
a2 b2 c2
a3 b3 c3 

1)排它锁
新建两个连接
在第一个连接中执行以下语句
begin tran
update table1
set A='aa'
where B='b2'
waitfor delay '00:00:30' --等待30秒
commit tran
在第二个连接中执行以下语句
begin tran
select * from table1
where B='b2' 
commit tran 

若同时执行上述两个语句,则select查询必须等待update执行完毕才能执行即要等待30秒 

2)共享锁
在第一个连接中执行以下语句
begin tran
select * from table1 holdlock -holdlock人为加锁
where B='b2' 
waitfor delay '00:00:30' --等待30秒
commit tran 

在第二个连接中执行以下语句
begin tran
select A,C from table1
where B='b2' 
update table1
set A='aa'
where B='b2' 
commit tran 

若同时执行上述两个语句,则第二个连接中的select查询可以执行
而update必须等待第一个事务释放共享锁转为排它锁后才能执行 即要等待30秒 

3)死锁
增设table2(D,E)
D E
d1 e1
d2 e2
在第一个连接中执行以下语句
begin tran
update table1
set A='aa'
where B='b2' 
waitfor delay '00:00:30'
update table2
set D='d5'
where E='e1' 
commit tran

在第二个连接中执行以下语句
begin tran
update table2
set D='d5'
where E='e1' 
waitfor delay '00:00:10'
update table1
set A='aa'
where B='b2' 
commit tran 

同时执行,系统会检测出死锁,并中止进程 

补充一点:
Sql Server2000支持的表级锁定提示 

HOLDLOCK 持有共享锁,直到整个事务完成,应该在被锁对象不需要时立即释放,等于SERIALIZABLE事务隔离级别 

NOLOCK 语句执行时不发出共享锁,允许脏读 ,等于 READ UNCOMMITTED事务隔离级别 

PAGLOCK 在使用一个表锁的地方用多个页锁 

READPAST 让sql server跳过任何锁定行,执行事务,适用于READ UNCOMMITTED事务隔离级别只跳过RID锁,不跳过页,区域和表锁 

ROWLOCK 强制使用行锁 

TABLOCKX 强制使用独占表级锁,这个锁在事务期间阻止任何其他事务使用这个表 

UPLOCK 强制在读表时使用更新而不用共享锁 

应用程序锁:
应用程序锁就是客户端代码生成的锁,而不是sql server本身生成的锁 

处理应用程序锁的两个过程 

sp_getapplock 锁定应用程序资源 

sp_releaseapplock 为应用程序资源解锁 

注意: 锁定数据库的一个表的区别 

SELECT * FROM table WITH (HOLDLOCK) 其他事务可以读取表,但不能更新删除 

SELECT * FROM table WITH (TABLOCKX) 其他事务不能读取表,更新和删除