数学函数基本知识点

2024-05-12 22:29

1. 数学函数基本知识点

1. .函数的单调性
(1)设x1x2a,b,x1x2那么 (x1x2)f(x1)f(x2)0(x1x2)f(x1)f(x2)0
f(x1)f(x2)
x1x2f(x1)f(x2)
x1x2
0f(x)在a,b上是增函数; 0f(x)在a,b上是减函数.
(2)设函数yf(x)在某个区间内可导,如果f(x)0,则f(x)为增函数;如果
f(x)0,则f(x)为减函数.
注:如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)g(x)也是减函数;如果函数yf(u)和ug(x)在其对应的定义域上都是减函数,则复合函数
yf[g(x)]是增函数.
2. 奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
注:若函数yf(x)是偶函数,则f(xa)f(xa);若函数yf(xa)是偶函数,则f(xa)f(xa).
注:对于函数yf(x)(xR),f(xa)f(bx)恒成立,则函数f(x)的对称轴是函数x
ab2
;两个函数yf(xa)与yf(bx) 的图象关于直线x
ab2
对称.
a
注:若f(x)f(xa),则函数yf(x)的图象关于点(,0)对称;若
2
f(x)f(xa),则函数yf(x)为周期为2a的周期函数.
nn1
3. 多项式函数P(x)anxan1xa0的奇偶性
多项式函数P(x)是奇函数P(x)的偶次项(即奇数项)的系数全为零. 多项式函数P(x)是偶函数P(x)的奇次项(即偶数项)的系数全为零. 23.函数yf(x)的图象的对称性
(1)函数yf(x)的图象关于直线xa对称f(ax)f(ax) f(2ax)f(x).
(2)函数yf(x)的图象关于直线x
f(abmx)f(mx).
ab2
对称f(amx)f(bmx)
4. 两个函数图象的对称性
(1)函数yf(x)与函数yf(x)的图象关于直线x0(即y轴)对称. (2)函数yf(mxa)与函数yf(bmx)的图象关于直线x
1
ab2m
对称.
(3)函数yf(x)和yf(x)的图象关于直线y=x对称.

数学函数基本知识点

2. 数学所有函数知识点归纳

1.常量和变量
在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
3.自变量的取值范围
(1)整式:自变量取一切实数.
(2)分式:分母不为零.
(3)偶次方根:被开方数为非负数.
(4)零指数与负整数指数幂:底数不为零.
4.函数值
对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.
5.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
6.函数的图象
把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.
由函数解析式画函数图象的步骤:
(1)写出函数解析式及自变量的取值范围;
(2)列表:列表给出自变量与函数的一些对应值;
(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;
(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.
7.一次函数
(1)一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.
(2)一次函数的图象
一次函数y=kx+b的图象是一条经过(0,b)点和 点的直线.
特别地,正比例函数图象是一条经过原点的直线.
需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.
(3)一次函数的性质
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为 .
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
8.反比例函数
(1)反比例函数
如果 (k是常数,k≠0),那么y叫做x的反比例函数.
(2)反比例函数的图象
反比例函数的图象是双曲线.
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.
③反比例函数图象关于直线y=±x对称,关于原点对称.
(4)k的两种求法
①若点(x0,y0)在双曲线 上,则k=x0y0.
②k的几何意义:
若双曲线 上任一点A(x,y),AB⊥x轴于B,则S△AOB 
 
(5)正比例函数和反比例函数的交点问题
若正比例函数y=k1x(k1≠0),反比例函数 ,则
当k1k2<0时,两函数图象无交点;
当k1k2>0时,两函数图象有两个交点,坐标分别为 由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

1.二次函数
如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.
几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函数的图象
二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.
由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.
3.二次函数的性质
二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:
(1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上;
(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x< 时,y随x的增大而减小;当x> 时,y随x的增大而增大;当x= ,y有最小值 ;
若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x< ,y随x的增大而增大;当 时,y随x的增大而减小;当x= 时,y有最大值 ;
(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);
(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:
当�8�5=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是 和 ,这两点的距离为 ;当�8�5=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点 ;当�8�5<0时,抛物线y=ax2+bx+c与x轴没有公共点.
4.抛物线的平移
抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.1.常量和变量
在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
3.自变量的取值范围
(1)整式:自变量取一切实数.
(2)分式:分母不为零.
(3)偶次方根:被开方数为非负数.
(4)零指数与负整数指数幂:底数不为零.
4.函数值
对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.
5.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
6.函数的图象
把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.
由函数解析式画函数图象的步骤:
(1)写出函数解析式及自变量的取值范围;
(2)列表:列表给出自变量与函数的一些对应值;
(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;
(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.
7.一次函数
(1)一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.
(2)一次函数的图象
一次函数y=kx+b的图象是一条经过(0,b)点和 点的直线.
特别地,正比例函数图象是一条经过原点的直线.
需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.
(3)一次函数的性质
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为 .
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
8.反比例函数
(1)反比例函数
如果 (k是常数,k≠0),那么y叫做x的反比例函数.
(2)反比例函数的图象
反比例函数的图象是双曲线.
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.
③反比例函数图象关于直线y=±x对称,关于原点对称.
(4)k的两种求法
①若点(x0,y0)在双曲线 上,则k=x0y0.
②k的几何意义:
若双曲线 上任一点A(x,y),AB⊥x轴于B,则S△AOB 
 
(5)正比例函数和反比例函数的交点问题
若正比例函数y=k1x(k1≠0),反比例函数 ,则
当k1k2<0时,两函数图象无交点;
当k1k2>0时,两函数图象有两个交点,坐标分别为 由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

1.二次函数
如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.
几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函数的图象
二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.
由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.
3.二次函数的性质
二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:
(1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上;
(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x< 时,y随x的增大而减小;当x> 时,y随x的增大而增大;当x= ,y有最小值 ;
若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x< ,y随x的增大而增大;当 时,y随x的增大而减小;当x= 时,y有最大值 ;
(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);
(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:
当�8�5=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是 和 ,这两点的距离为 ;当�8�5=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点 ;当�8�5<0时,抛物线y=ax2+bx+c与x轴没有公共点.
4.抛物线的平移
抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.1.常量和变量
在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
3.自变量的取值范围
(1)整式:自变量取一切实数.
(2)分式:分母不为零.
(3)偶次方根:被开方数为非负数.
(4)零指数与负整数指数幂:底数不为零.
4.函数值
对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.
5.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
6.函数的图象
把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.
由函数解析式画函数图象的步骤:
(1)写出函数解析式及自变量的取值范围;
(2)列表:列表给出自变量与函数的一些对应值;
(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;
(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.
7.一次函数
(1)一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.
(2)一次函数的图象
一次函数y=kx+b的图象是一条经过(0,b)点和 点的直线.
特别地,正比例函数图象是一条经过原点的直线.
需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.
(3)一次函数的性质
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为 .
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
8.反比例函数
(1)反比例函数
如果 (k是常数,k≠0),那么y叫做x的反比例函数.
(2)反比例函数的图象
反比例函数的图象是双曲线.
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.
③反比例函数图象关于直线y=±x对称,关于原点对称.
(4)k的两种求法
①若点(x0,y0)在双曲线 上,则k=x0y0.
②k的几何意义:
若双曲线 上任一点A(x,y),AB⊥x轴于B,则S△AOB 
 
(5)正比例函数和反比例函数的交点问题
若正比例函数y=k1x(k1≠0),反比例函数 ,则
当k1k2<0时,两函数图象无交点;
当k1k2>0时,两函数图象有两个交点,坐标分别为 由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

1.二次函数
如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.
几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函数的图象
二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.
由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.
3.二次函数的性质
二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:
(1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上;
(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x< 时,y随x的增大而减小;当x> 时,y随x的增大而增大;当x= ,y有最小值 ;
若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x< ,y随x的增大而增大;当 时,y随x的增大而减小;当x= 时,y有最大值 ;
(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);
(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:
当�8�5=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是 和 ,这两点的距离为 ;当�8�5=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点 ;当�8�5<0时,抛物线y=ax2+bx+c与x轴没有公共点.
4.抛物线的平移
抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.

3. 函数的知识点总结

   临近考试,各科都会对知识点进行总结,那么,以下是我给大家整理收集的函数的知识点总结,内容仅供参考。
    函数的知识点总结:     一、函数的单调性 
    在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.
    f′(x)≥0f(x)在(a,b)上为增函数.
    f′(x)≤0f(x)在(a,b)上为减函数.
     二、函数的极值 
    1、函数的极小值:
    函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
    2、函数的极大值:
    函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
    极小值点,极大值点统称为极值点,极大值和极小值统称为极值.
     三  、函数的最值 
    1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
    2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.
     四、求可导函数单调区间的一般步骤和方法 
    1、确定函数f(x)的定义域;
    2、求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;
    3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;
    4、确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.
     五、求函数极值的步骤 
    1、确定函数的定义域;
    2、求方程f′(x)=0的根;
    3、用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;
    4、由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况.
     六、求函数f(x)在[a,b]上的最大值和最小值的步骤 
    1、求函数在(a,b)内的极值;
    2、求函数在区间端点的'函数值f(a),f(b);
    3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.
     特别提醒: 
    1、f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件.
    2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.
    3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.

函数的知识点总结

4. 数学函数有哪些知识点

定义域、值域、区间

5. 有关函数的知识 总结

人教版初中函数
 
如果帮到您,一定要“采纳”。谢谢您的举手之劳!
 
一、函数

1. 常量、变量和函数

在某一过程中可以取不同数值的量,叫做变量.在整个过程中保持统一数值的量或数,叫做常量或常数.一般地,设在变化过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量. 

2. 函数的两要素

(1)函数的定义域

(2)对应法则

3. 函数的表示方法

(1) 解析法 

就是用一个等式来表示一个变量是另一个变量的函数,这个等式叫做这个函数的解析表达式(函数关系式).

(2) 列表法 

(3) 图像法 

4. 函数的值域

一般的,当函数f(x)的自变量x取定义域D中的一个确定的值a时,函数都有唯一确定的对应值,这个对应值称为x=a时的函数值,简称函数值,记作:f(a).

5. 函数的图像

若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x)),这些点构成一个图形F,这个图形F就是函数y=f(x)的图像. 

知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤.

二、正比例函数与反比例函数

1. 正比例函数

一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k叫做变量y与x之间的比例常数,确定了比例常数k,就可以确定一个正比例函数.

正比例函数y=kx有下列性质: 

(1) 当k>0时,它的图像经过第一、三象限,y随着x的值增大而增大;当k<0时,他的图像经过第二、四象限,y随着x的增大而减小. 

(2)随着比例常数的绝对值的增加,函数图像渐渐离开x轴而接近于y轴,因此,比例系数k和直线y=kx与x轴正方向所成的角有关据此,k叫做直线y=kx的斜率. 

2. 反比例函数

一般地,函数y=k/x(k是不等于0的常数)叫做反比例函数. 

反比例函数y=k/x有下列性质: 

(1) 当k>0时,他的图像的两个分支分别位于第一、三象限内,在每一个象限内,y随x的值增大而减小;当k<0时,它的图像的两个分支分别位于第二、四象限内,在每一个象限内,y随x的增大而增大. 

(2) 它的图像的两个分支都无限接近但永远不能达到x轴和y轴. 

三、一次函数

1. 一次函数及其图像 

形如y=kx+b(k,b为常数)的函数叫一次函数.

如果k=0时,函数变形为y=b,无论x在其定义域内取何值,y都有唯一确定的值b与之对应,这样的函数我们称它为常函数.

直线y=kx+b与y轴交与点(0,b),b叫做直线y=kx+b在y轴上的截距,简称纵截距.

2. 一次函数的性质

函数y=f(x),在a < x < b上,如果函数值随着自变量x的值增加而增加,那么我们说函数f(x)在a < x < b上是递增函数;如果函数值随着自变量x的值增大而减小,那么我们说函数y=f(x)在a < x < b上是递减函数.

如果分别画出两个二元一次方程所对应的一次函数图像,交点的坐标就是这个方程组的解,这种求二元一次方程组的解法叫图像法.

四   二次函数:y=ax^2+bx+c (a,b,c是常数,且a不等于0) 
a>0开口向上 
a<0开口向下 
a,b同号,对称轴在y轴左侧,反之,再y轴右侧 
|x1-x2|=根号下b^2-4ac除以|a| 
与y轴交点为(0,c) 
b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根 
b^2-4ac<0,ax^2+bx+c=0无实根 
b^2-4ac=0,ax^2+bx+c=0有两个相等的实根 
对称轴x=-b/2a 
顶点(-b/2a,(4ac-b^2)/4a) 
顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a 
函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减 
函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减 

当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),并向下无限延伸。|a|越大,开口越小;|a|越小,开口越大. 

4.画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。 
二次函数解析式的几种形式 

(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0). 

(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0). 

(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 

说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点. 

(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和 

x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2). 

求抛物线的顶点、对称轴、最值的方法 

①配方法:将解析式化为y=a(x-h)2+k的形式,顶点坐标(h,k),对称轴为直线x=h,若a>0,y有最小值,当x=h时,y最小值=k,若a<0,y有最大值,当x=h时,y最大值=k. 

②公式法:直接利用顶点坐标公式(- , ),求其顶点;对称轴是直线x=- ,若a>0,y有最小值,当x=- 时,y最小值= ,若a<0,y有最大值,当x=- 时,y最大值= . 

6.二次函数y=ax2+bx+c的图像的画法 

因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是: 

(1)先找出顶点坐标,画出对称轴; 

(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等); 

(3)把上述五个点按从左到右的顺序用平滑曲线连结起来.

有关函数的知识 总结

6. 数学函数的所有总结

函数的有关概念 
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 
 
 
 
注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式. 
定义域补充 
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.  (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. 
(又注意:求出不等式组的解集即为函数的定义域。) 
2. 构成函数的三要素:定义域、对应关系和值域 
再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 
(见课本21页相关例2) 
值域补充 
(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.  (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。 
3. 函数图象知识归纳 
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象. 
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A } 
图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 
(2) 画法 
A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. 
B、图象变换法(请参考必修4三角函数) 
常用变换方法有三种,即平移变换、伸缩变换和对称变换  
(3)作用: 
1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。 
 发现解题中的错误。 
4.快去了解区间的概念 
(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 
5.什么叫做映射 
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B” 
给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象 
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。 
6. 常用的函数表示法及各自的优点: 
○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2 解析法:必须注明函数的定义域;○3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 
注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值 
补充一:分段函数   (参见课本P24-25)  
在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 
补充二:复合函数 
如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A)  称为f、g的复合函数。 
例如:   y=2sinX         y=2cos(X2+1) 
7.函数单调性 
(1).增函数 
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间 (睇清楚课本单调区间的概念) 
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 
注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 
○2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。 
(2) 图象的特点 
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.  
(3).函数单调区间与单调性的判定方法 
(A) 定义法: 
○1 任取x1,x2∈D,且x1<x2;○2 作差f(x1)-f(x2);○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x1)-f(x2)的正负);○5 下结论(指出函数f(x)在给定的区间D上的单调性). 
(B)图象法(从图象上看升降)_ 
(C)复合函数的单调性 
  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:  
函数 单调性 
u=g(x) 增 增 减 减 
y=f(u) 增 减 增 减 
y=f[g(x)] 增 减 减 增 
注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗? 
 
 
 
8.函数的奇偶性 
(1)偶函数 
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. 
(2).奇函数 
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。 
○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称). 
(3)具有奇偶性的函数的图象的特征 
偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 
总结:利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2 确定f(-x)与f(x)的关系;○3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 
注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 
9、函数的解析表达式 
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. 
(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x) 
10.函数最大(小)值(定义见课本p36页) 
○1 利用二次函数的性质(配方法)求函数的最大(小)值○2 利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 

第二章 基本初等函数 
一、指数函数 
(一)指数与指数幂的运算 
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *. 
当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand). 
当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。 
注意:当 是奇数时, ,当 是偶数时,  
2.分数指数幂 
正数的分数指数幂的意义,规定: 
 ,  
0的正分数指数幂等于0,0的负分数指数幂没有意义 
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 
3.实数指数幂的运算性质 
(1) ?   ; 
(2)   ; 
(3)   . 
(二)指数函数及其性质 
1、指数函数的概念:一般地,函数 叫做指数函数(exponential function),其中x是自变量,函数的定义域为R. 
注意:指数函数的底数的取值范围,底数不能是负数、零和1. 
2、指数函数的图象和性质 
a>1 0<a<1 
    
图象特征 函数性质 
  
  
  
  

向x、y轴正负方向无限延伸 函数的定义域为R 
图象关于原点和y轴不对称 非奇非偶函数 
 
 
  
 
函数图象都在x轴上方 函数的值域为R+ 
函数图象都过定点(0,1)   

自左向右看, 
图象逐渐上升 自左向右看, 
图象逐渐下降 增函数 减函数 
在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1   
  

在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1   
  

图象上升趋势是越来越陡 图象上升趋势是越来越缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢; 
注意:利用函数的单调性,结合图象还可以看出: 
(1)在[a,b]上, 值域是 或 ; 
(2)若 ,则 ; 取遍所有正数当且仅当 ; 
(3)对于指数函数 ,总有 ; 
(4)当 时,若 ,则 ; 
二、对数函数 
(一)对数 
1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式) 
说明:○1 注意底数的限制 ,且 ; 
○2 ; 
○3 注意对数的书写格式. 
两个重要对数: 
○1 常用对数:以10为底的对数 ; 
○2 自然对数:以无理数 为底的对数的对数 . 
2、 对数式与指数式的互化 
      
对数式   指数式 
对数底数 ←    → 幂底数 
对数 ←    → 指数 
真数 ←    → 幂 
(二)对数的运算性质 
如果 ,且 , , ,那么: 
○1 ? + ; 
○2 - ; 
○3 . 
注意:换底公式 
  ( ,且 ; ,且 ; ). 
利用换底公式推导下面的结论(1) ;(2) . 
(二)对数函数 
1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞). 
注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。 
如: , 都不是对数函数,而只能称其为对数型函数. 
○2 对数函数对底数的限制: ,且 . 
2、对数函数的性质: 
a>1 0<a<1 
    
图象特征 函数性质 
  
  
  
  

函数图象都在y轴右侧 函数的定义域为(0,+∞) 
图象关于原点和y轴不对称 非奇非偶函数 
向y轴正负方向无限延伸 函数的值域为R 
函数图象都过定点(1,0)   

自左向右看, 
图象逐渐上升 自左向右看, 
图象逐渐下降 增函数 减函数 
第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0   
  

第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0   
  

(三)幂函数 
1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 
2、幂函数性质归纳. 
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); 
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; 
(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 

第三章 函数的应用 
一、方程的根与函数的零点 
1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 
2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即: 
方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 
3、函数零点的求法: 
求函数 的零点: 
○1 (代数法)求方程 的实数根; 
○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 
4、二次函数的零点: 
二次函数 . 
1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. 
2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点. 
3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

7. 初中数学函数知识点总结

 函数是初中数学的重要知识点,接下来给大家总结初中数学函数重要知识点,一起看一下具体内容,供参考。
     
   一次函数知识点   1.一次函数
   如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数。
   特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数。
   2.一次函数的图像及性质
   (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
   (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
   (3)正比例函数的图像总是过原点。
   (4)k,b与函数图像所在象限的关系:
   当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
   当k>0,b>0时,直线通过一、二、三象限;
   当k>0,b<0时,直线通过一、三、四象限;
   当k0时,直线通过一、二、四象限;
   当k<0,b<0时,直线通过二、三、四象限;
   当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
   这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
   二次函数知识点   1.二次函数表达式
   (一)顶点式
   y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。
   (二)交点式
   y=a(x-x₁)(x-x₂) [仅限于与x轴即y=0有交点时的抛物线,即b²-4ac>0]
   函数与图像交于(x₁,0)和(x₂,0)
   (三)一般式
   y=aX²+bX+c=0(a≠0)(a、b、c是常数)
   2.二次函数的对称轴
   二次函数图像是轴对称图形。对称轴为直线x=-b/2a
   对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。
   特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
   a,b同号,对称轴在y轴左侧;
   a,b异号,对称轴在y轴右侧。
   3.二次函数图像的对称关系
   (一)对于一般式:
   ①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称
   ②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称
   ③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称
   ④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)
   (二)对于顶点式:
   ①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。
   ②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。
   ③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。
   ④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。

初中数学函数知识点总结

8. 初中数学函数知识点总结

 初中数学函数知识点总结
                      初中数学函数是常考的难点,那么初中数学函数知识点又应该怎么总结呢?下面初中数学函数知识点总结是我为大家带来的,希望对大家有所帮助。
    
    初中数学函数知识点总结 篇1     一、函数 
    (1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。
    (2)本质:一一对应关系或多一对应关系。
    有序实数对 平面直角坐标系上的点
    (3)表示方法:解析法、列表法、图象法。
    (4)自变量取值范围:
    对于实际问题,自变量取值必须使实际问题有意义;
    对于纯数学问题,自变量取值必须保证函数关系式有意义:
    ①分式中,分母≠0;
    ②二次根式中,被开方数≥0;
    ③整式中,自变量取全体实数;
    ④混合运算式中,自变量取各解集的公共部份。
     二、正比例函数与反比例函数 
    两函数的异同点
    二、一次函数(图象为直线)
    (1)定义式:y=kx+b (k、b为常数,k≠0);自变量取全体实数。
    (2)性质:
    ①k>0,过第一、三象限,y随x的增大而增大;
    k<0,过第二、四象限,y随x的'增大而减小。
    ②b=0,图象过(0,0);
    b>0,图象与y轴的交点(0,b)在x轴上方;
    b<0,图象与y轴的交点(0,b)在x轴下方。
     三、二次函数(图象为抛物线) 
    (1)自变量取全体实数
    一般式:y=ax2+bx+c (a、b、c为常数,a≠0),其中(0,c)为抛物线与y轴的交点;
    顶点式:y=a(x—h)2+k (a、h、k为常数,a≠0),其中(h,k)为抛物线顶点;
    h=- ,k= 零点式:y=a(x—x1)(x—x2)(a、x1、x2为常数,a≠0) 其中(x1,0)、(x2,0)为抛物线与x轴的交点。x1、x2 =  (b 2 -4ac ≥0 )
    (2)性质:
    ①对称轴:x=- 或x=h;
    ②顶点:(- , )或(h,k);
    ③最值:当x=- 时,y有最大(小)值,为  或当x=h时,y有最大(小)值,为k ;
    初中数学函数知识点总结 篇2     诱导公式的本质 
    所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。
     常用的诱导公式 
     公式一: 设为任意角,终边相同的角的同一三角函数的值相等: 
    sin(2k)=sin kz
    cos(2k)=cos kz
    tan(2k)=tan kz
    cot(2k)=cot kz
     公式二: 设为任意角,的三角函数值与的三角函数值之间的关系: 
    sin()=-sin
    cos()=-cos
    tan()=tan
    cot()=cot
     公式三: 任意角与 -的三角函数值之间的关系: 
    sin(-)=-sin
    cos(-)=cos
    tan(-)=-tan
    cot(-)=-cot
     公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系: 
    sin()=sin
    cos()=-cos
    tan()=-tan
    cot()=-cot
  ;